

Date: _____

Instructor: ERIC WOLGEMUTH

Student Name/ID#: _____

Total Score:

/ 15

GIG HARBOR HIGH SCHOOL - PHYSICS S2: 2(A), 3(A), 5(A)

Terms, Formulae & Units Of Measure

INSTRUCTIONS: Impulse and Momentum pretty much *demand* that you understand the units of measure and formulae. Let's see how you're doing with those.

QUESTION 1

/1

Momentum is the same as kinetic energy

- A True
- B False

QUESTION 2

/1

Please type in the equation that **BEST** represents the Law of Conservation of Momentum (**Hint:** You **MUST** use subscripts/superscripts. That means you **cannot use** the ^ key)

QUESTION 3

/1

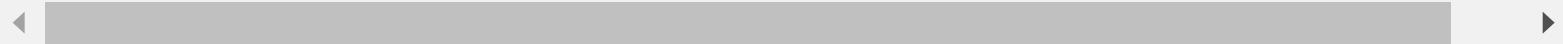
The unit(s) of measure for momentum is/are:

1	p	2	mv	3	J	4	kg m/s
---	---	---	----	---	---	---	--------

QUESTION 4

/1

The unit(s) of measure for impulse is/are:


1	p	2	mv	3	J	4	kg m/s
---	---	---	----	---	---	---	--------

QUESTION 5

/1

Impulse and momentum are EXACTLY the same thing.

- A True
- B False

QUESTION 6

/1

The symbol that we use to represent momentum is:

1	p	2	mv	3	J	4	kg m/s
---	---	---	----	---	---	---	--------

QUESTION 7

/1

The symbol that we use to represent impulse is:

1	p	2	mv	3	J	4	kg m/s
---	---	---	----	---	---	---	--------

QUESTION 8

 /1

Which of the following is NOT a formula that we can use to calculate impulse:

1	mv	2	F	3		4	$p_f - p_i$
---	----	---	---	---	--	---	-------------

QUESTION 9

 /1

Let's say it takes some sort of super-being .100 seconds to bring some object to a stop by exerting 1.00×10^6 N of force on that object. How much time would it take a dog exerting 10.0 N of force to bring that same object to a stop?

1 1.00×10^2 seconds

2 1.00×10^3 seconds

3 1.00×10^4 seconds

4 1.00×10^5 seconds

QUESTION 10

/1

When two objects collide and rebound *without* a loss of kinetic energy we say that collision is:

1

Choose one option for each blank section

1 inelastic

1 elastic

1 perfectly elastic

1 perfectly inelastic

QUESTION 11

/1

Which of the following is NOT a formula that we can use to calculate impulse:

1	F	2		3		4	$f=ma$
---	---	---	--	---	--	---	--------

QUESTION 12

/1

Impulse and momentum have EXACTLY the same units of measure.

- A True
- B False

QUESTION 13

/1

When two objects collide and stick together with a loss of kinetic energy we say that collision is:

1	
---	--

Choose one option for each blank section

1	inelastic
---	-----------

1	elastic
---	---------

1	perfectly elastic
---	-------------------

1	perfectly inelastic
---	---------------------

QUESTION 14

/2

A fly smacks into the windshield of a fully loaded school bus. Please type in ONLY THE FINAL portion of the equation that represents such a collision if kinetic energy is lost in that collision. (Hint: You **MUST** use subscripts/superscripts. That means you **cannot use** the ^ key)
